The Seebeck coefficient in oxides : the example of misfits and related compounds

Sylvie Hébert Laboratoire CRISMAT Caen, France

NGSCES Santiago de Compostela, July 2011

Laboratoire CRISMAT Cristallographie et Sciences des Matériaux

Outline

Introduction to thermoelectric effects

How to get large ZT : nanostructuration / reduction of κ / strong electronic correlations The Na_xCoO_2 family

The misfit cobalt oxides

New materials with edge shared octahedra

Introduction : Thermoelectric effects

Thermoelectric effects

 $\Delta V \Leftrightarrow \Delta T$

Seebeck effect $(\Delta T \Rightarrow \Delta V)$: thermogenerators Peltier effect $(\Delta V \Rightarrow \Delta T)$: cooling systems

For applications : n and p type materials with ZT > 1

Classical thermoelectrics

J. Snyder et al., Nature Materials 7, 105 (2008)

Thermoelectric materials How to get a large $ZT = \frac{S^2T}{\rho\kappa}$???? Problem : S, κ , ρ are linked through the Density of States (n)

Heavily doped semi-conductors and semi-metals are the best candidates

 $PF = S^2/\rho$

Power factor Modification of DOS Nanostructuration Electronic correlations

Lattice part of thermal conductivity Nanostructuration (Rattling' Introduction : Nanostructuration

Mott's formula

$$S = \frac{\pi^2 k_B^2}{3e} T(\frac{\partial \ln \sigma(E)}{\partial E})_{E=E_F}$$

Tse et al., Handbook of Thermoelectricity (2006)

Hicks et Dresselhaus, PRB47, 12727 (1993) Hicks et Dresselhaus, PRB47, 16631 (1993)

Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO₃

HIROMICHI OHTA^{1,2,3}*, SUNGWNG KIM⁴, YORIKO MUNE¹, TERUYASU MIZOGUCHI⁵, KENJI NOMURA³, SHINGO OHTA¹, TAKASHI NOMURA¹, YUKI NAKANISHI¹, YUICHI IKUHARA⁵, MASAHIRO HIRANO³, HIDEO HOSONO^{3,4} AND KUNIHITO KOUMOTO^{1,2}

¹Nagoya University, Graduate School of Engineering, Furo-cho, Chikusa, Nagoya 464-8603, Japan

²CREST, JST, 4-1-8 Honcho, Kawaguchi 332-0012, Japan

³ERATO-SORST, JST, in Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan

⁴Frontier Collaborative Research Center, Tokyo Institute of Technology, 4259 Nagatsuta, Midori, Yokohama 226-8503, Japan

⁵Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-8656, Japan

*e-mail: h-ohta@apchem.nagoya-u.ac.jp

Extrapolation to ZT_{2DEG} = 2.4 at 300K

Nature Materials, 6, 129 (2007)

Silicium nanowires

A. I. Hochbaum et al., Nature 451, 163 (2008) A. I. Boukai et al., Nature 451, 168 (2008)

Bulk Si : ZT ~ 0.01 at 300K

ST = 0.6 at 300K for nanowires

ZT enhancement mainly due to phonons : Reduction of κ + phonon drag for S

Introduction : Electronic correlations

Electronic correlations

Modification of DOS

Kondo insulators, Heavy fermion compounds, oxides...

A. Georges et al, Review of Modern Physics 68, 13 (1996)

Low T limit

K. Behnia et al. JPCM 16, 5187 (2004)

High T limit : Hubbard model

$$S = \frac{-S^{(2)} / S^{(1)} + \mu / |e|}{T} \rightarrow \frac{\mu / |e|}{T} \qquad \text{for } T \rightarrow \infty$$

S⁽¹⁾, S⁽²⁾: depends on v and Q, velocity and energy operators Valid for narrow band systems with strong interactions

Limit $T \rightarrow \infty$: S ~ entropy / carrier

P. Chaikin et al. Phys. Rev. B 13, 647 (1976)

Spin and orbital degeneracy

Narrow band systems with strong interactions : the Hubbard model

Orthochromites

Introduction : Na_xCoO₂

Na_{0.7}CoO₂ ' Phonon Glass / Electron crystal '

I. Terasaki et al., Phys. Rev. B 56, R12685 (1997)

Small κ (polycrystals) $\kappa \sim 2Wm^{-1}K^{-1}$

(crystals) $\kappa \sim 5Wm^{-1}K^{-1}$

Measurements on polycrystals

Power factor $P=S^2/\rho$ at 300K

$$Na_{0.7}CoO_2$$

P= 50 10⁻⁴ WK⁻²m⁻¹

At 300K

Oxides : Potentially stable in air,

ZT of oxides

NaxCoO2 _ Fujita : JJAP 40, 4644 (2001); SrTiO3 _ Muta : J. Alloys and compounds 350, 292 (2003); Ca2.4Bi0.3Na0.3Co4O9 _ Xu : APL80, 3760 (2002); Whiskers BiSrCoO _ Funahashi : APL81, 1459 (2002); Ca3Co2O6 _ Mikami : JAP94, 10 (2003); 2DEGs(SrTiO3) _ Ohta : Nature Materials 6, 129 (2007); Ca3Co4O9 crystal _ Shikano : APL 82, 1851 (2003); LaSrCoO _ Androulakis : APL84, 1099 (2004); ZnAlO _ Ohtaki : JAP79, 1816 (1996)

Origin of large S?

T. Yamamoto et al., Phys. Rev. B 65, 184434 (2002)

The Kelvin formula

M. R. Peterson et al., PRB82, 195105 (2010)

t- J model for Na_xCoO_2 with x ~ 0.7

Heikes formula valid for T > 6 - 8 t

The misfit family

The misfit family

• n = 4 $[Bi_2A'_2O_4]^{RS}[CoO_2]_{b1/b2}$ $A' = Ca^{2+}, Sr^{2+} \text{ or } Ba^{2+}$ • n = 3 $[A'_2CoO_3]^{RS}[CoO2]_{b1/b2}$ $A' = Ca^{2+} \text{ or } Sr^{2+}$ • n = 2 $[Sr_2O_2]^{RS}[CoO2]_{b1/b2}$

n = 2 $[Sr_2O_2]^{RS}[CoO2]_{b1/b2}$ $[Ca_2(OH)_2]^{RS}[CoO_2]_{b1/b2}$

Leligny et col., C. R. Acad. Sci. Paris, t. 2, Série II c, 409 (1999) Boullay et col., Chem. Mater. 8, 1482 (1996) Masset et col., Phys. Rev. B 62, 166 (2000) Yamauchi et col., Chem. Mater. 18, 155 (2005)

Two different behaviours at low T

Different resistivities but same S(T) Only a shift of S

A. C. Masset et al., PRB62, 166 (2000) S. Hébert et al., PRB64, 172101 (2001) Low thermal conductivity

Two different behaviours at low T

Unique behavior of Cdl₂ type layers: Comparison with other oxides

Perovskite $Sr_{2/3}Y_{1/3}CoO_{8/3+\delta}$

Corner shared octahedra≠ edge shared octahedra

A. Maignan et al., JSSC178, 868 (2005)

Doping effect in the misfit family

$$\mathbf{v}_{Co} = 4 - \frac{\alpha}{b_1 / b_2}$$

Modification of v_{Co} via α and b_1/b_2 Link between v_{co} and S?

v_{Co} 2-

Metallic behavior down to 5K with $\rho = AT^2$

BiSrPbCoO single crystals : modification of α

t- J model : Linear T dependence of R_{μ} t~10-40K Justifies the Heikes formula (T/t > 6 - 8)B. Kumar et al., PRB68, 104508 (2003) Y. Wang et al., cond-mat/0305455 G. Leon et al., PRB78, 085105 (2008) Increase of v_{Co} At 100K 3.11 1.06×10^{21} cm⁻³ for BSCO 3.18 1.73×10^{21} cm⁻³ for BPSCO Increase of 'Co4+' associated to a decrease of S Generalized Heikes formula : increase of v_{Co} 3.59 for BSCO and 3.65 for BPSCO

W. Kobayashi et al., JPCM21, 235404 (2009)

BiCaCoO/ BiSrCoO/ BiBaCoO single crystals

S not affected by the strong modification of ρ

If b_1/b_2 , carrier concentration

$$\mathbf{v}_{co} = 4 - \frac{\alpha}{b_1 / b_2}$$

S at 300K depends on doping $V_{Co} = 3.05 - 3.15?$

W. Kobayashi et al.

Bi-based compounds

Heikes formula

$$S = -\frac{k_{B}}{|e|} \ln(\frac{g_{4}}{g_{3}}\frac{1-x}{x})$$

Co valency in BiCaCoO/ BiSrCoO / BiBaCoO?

Heikes (S at 300K)	Hall effect
3.5 -3.7 for $g_4 / g_3 = 6$	3.05 -3.15

Carrier concentration changes with misfit ratio b₁/b₂

single hole-like fermi surface (a_{1g} character)

 $k_F = 0.57 \pm 0.05 \text{ Å}^{-1}$ for BiBaCoO

- \longrightarrow similar to $k_{\rm F}$ of Na_xCoO₂ (x=0.7)
- Co^{3.3+} for BiBaCoO
 V. Brouet et al., PRB76, 100403 (2007)

Co^{3.2+} for BiSrCoO Co^{3.1+} for BiCaCoO

Heikes formula

Co valency in BiCaCoO/ BiSrCoO / BiBaCoO

Heikes (S at 300K)	Hall effect	ARPES BiBaCoO	NMR
3.5 -3.7 for $g_4 / g_3 = 6$ 3.1 - 3.3 for $g_4 / g_3 = 2$	3.05 -3.15 W. Kobayashi et al.	3.3 V. Brouet et al., PRB76, 100403 (2007)	3.1 -3.3 J. Bobroff et al., PRB76, 100407 (2007)

 $g_4 / g_3 = 2$ instead of 6 Confirms the results in BiCaCoO : $v_{Co} = 3.24$ *M. Pollet et al., JAP101, 083708 (2007)*

Thermoelectric power of misfits

Low T : Electronic correlations

P. Limelette, PRB71, 233108 (2005)

K. Behnia et al. JPCM 16, 5187 (2004)

P. Limelette, PRL97, 046601 (2006)

Low T : Spin entropy

BiCaCoO : excess of S at low T

A. Maignan et al., JPCM 15, 2711 (2003)

Observed also in Na_xCoO₂ [*Wang et al. Nature 423, 425 (2003)*]

Spin entropy at low T

Misfit BiCaCoO

Decrease of S under field at low T Due to the alignement of paramagnetic spins

Scaling law for S(H) : paramagnetic spins S=1/2 Brillouin function

 $S(x)/S(0) = (\ln[2\cosh(x)] - x \tanh[x])/\ln(2).$

Na_{0.7}CoO₂ Y. Wang et al., Nature423, 425 (2003)

P. Limelette et al., PRL97, 046601 (2006)

Spin entropy at low T

х

J. Bobroff et al., PRB76, 100407 (2007)

Thermoelectric power of misfits

Power factor

In conventional semiconducting thermoelectric material such as Bi_2Te_3 , *n* is an important parameter to tune the properties.

How to modify the electronic properties? Influence of the block layer?

Hollandites

Ba_{1.2}Rh₈O₁₆ hollandite

Quasi 1D structure

Tunnels made of edge shared octahedra

Needle like single crystals

W.Kobayashi et al., PRB79, 085207 (2009)

Ba_{1.2}Rh₈O₁₆ hollandite

Hall effect : 1.01×10^{22} cm⁻³ at 300K

Ba_{1.2}Rh₈O₁₆ hollandite

Peak of S(T) and PF at low T PF~Na_{0.7}CoO₂ at 300K For comparison : 187.10⁻⁴ Wm⁻¹K⁻² for Na_{0.88}CoO₂ at 75K

Possible shift of PF at higher T?

n type hollandite : $Pb_{1.6}V_8O_{16}$ $3d^1/3d^2$ with $v_v = 3.6$ Synthesis without pressure

112/m1 space group with a=10.125Å, b=2.902Å and c=9.880Å

Pb_{1.6}V₈O₁₆ : magnetic properties 300K 100K

ED: no structural transition

Pb_{1.6}V₈O₁₆ : Transport properties

A. Maignan et al., PRB82, 035122 (2010)

Conclusion

Several contributions to the Seebeck coefficients in misfits :

• S ~ γ T at low T

• Spin entropy at low T depending on susceptibility

• At high T

$$S = -\frac{k_B}{|e|} \ln(\beta \frac{1-x}{x})$$

Major role of the Heikes formula even at T ~ 300K

Collaborators

Laboratoire CRISMAT

Wataru Kobayashi (Tsukuba), Oleg Lebedev, Antoine Maignan, Christine Martin, Denis Pelloquin, Olivier Perez

Patrice Limelette, LEMA, Tours Julien Bobroff, Véronique Brouet, LPS Orsay

This work is supported by FP7 European Initial Training Network SOPRANO (GA-2008-214040)

