Orbital Ice: p-band Mott insulator on the diamond lattice

Gia-Wei Chern (U. Wisconsin - Madison/Los Alamos Nat. Lab)

NGSCES Santiago de Compostela 2011

Acknowledgement

- Congjun Wu (UC San Diego).
- C. D. Batista (Los Alamos).
- N. Perkins (U. Wisconsin).
- R. Moessner (Max-Planck, Dresden).
- O. Tchernyshyov (Johns Hopkins).

Outline

- Geometrical frustration:
 - Macroscopic ground-state degeneracy.
 - Perturbations \rightarrow rich and diverse magnetic phases.
- Spin ice:
 - Fractionalized excitations: magnetic monopoles.
 - Emergent gauge structure and coulomb phase.
- Orbital ice:
 - *p*-band Mott insulators in optical diamond-lattice.
 - Exact many-body ground states forming a ice manifold.
- Conclusion and outlook.

- One frustrated bond on each \triangle .
- # of ground states $W_{gs} = e^{\text{const} \times N}$

const = $\frac{2}{\pi} \int_0^{\pi/3} \ln(2\cos x) \, dx = 0.323066$

- Residual entropy $S = k_B \ln W_{\rm gs} \propto N$.
- No long-range spin order down to $T \to 0$. power-law spin correlation $\langle \mathbf{S}_{\mathbf{r}} \cdot \mathbf{S}_0 \rangle \sim \operatorname{const}/r^2$.

G. H. Wannier, R.M.F. Houtappel (1950)

Antiferromagnet on Bi-Simplex Lattice

How many Ground States ?

Discrete Spins (e.g. Ising spin):

6 out of $2^4 = 16$ configurations satisfy $\mathbf{S}_{\boxtimes} = 0$, a fraction of $\frac{3}{8}$. Number of ground states: $W_{\text{gs}} \approx \left(\frac{3}{8}\right)^{N_{\text{tet}}} \times 2^N = \exp\left(\frac{N}{2}\ln\frac{3}{2}\right)$. $[N_{\text{tet}} = N/2]$

 $\implies \text{Residual entropy: } \frac{S}{N} = k_B \frac{1}{2} \ln \frac{3}{2} = 1.68 \text{ J/(mol K)}.$ [Pauling's estimate]

Experimental spin-ice $Dy_2Ti_2O_7$: $S_0/N = 1.86 \text{ J/(mol K)}$. [Bramwell and Gingras (2001)]

Continuous (Heisenberg) Spins

Ground states: Rigid rotation $+(\theta, \phi)$

Pyrochlore Lattice:

The degenerate ground states form a continuous manifold $\mathbf{x} = (x_1, x_2, \cdots, x_D)$

$$D = N_{\boxtimes} = N_{\rm spin}/2$$

Macroscopic degeneracy : Hypersensitivity to perturbations Relieving the frustration:

- Quantum fluctuations (order-by-disorder): Valence bond solid
- Further neighbor interactions: Néel order, spin nematic
- Long-range dipolar interaction: Spin ice (Ho₂Ti₂O₇ and Dy₂Ti₂O₇)
- Spin-Lattice coupling: Néel order (ZnCr₂O₄, CdCr₂O₄)
- itinerant electrons, double-exchange coupling: Non-coplanar magnetic order

Spin-Lattice coupling

- magnetoelastic coupling: $E_{ij} = J(r_{ij})\mathbf{S}_i \cdot \mathbf{S}_j = J_0 \mathbf{S}_i \cdot \mathbf{S}_j + J' \delta r_{ij} (\mathbf{S}_i \cdot \mathbf{S}_j).$
- elastic energy: $\frac{k}{2}(\delta r_{ij})^2$.
- $\Rightarrow E_{\text{eff}} = \sum_{\langle ij \rangle} \left[J \mathbf{S}_i \cdot \mathbf{S}_j K (\mathbf{S}_i \cdot \mathbf{S}_j)^2 \right]$
- Collinear spins in ground state !
- Tetragonal flattening along x, y, and z.

O. Tchernyshyov, R. Moessner, S. Sondhi, PRB (2002) G.-W. Chern, C. Fennie, O. Tchernyshyov, PRB (2006)

Ex: CdCr2O4

Staggered distortion:

J.-H. Chung et al., (2005).

• 1st-order transition at T = 7.8 K.

G.-W. Chern, C. Fennie, O. Tchernyshyov, PRB (2006)

Spin Ice:

- Pyrochlore *ferromagnet* of rare-earth ions. (e.g. $Di_2Ti_2O_7$ with S = 15/2)
- Strong crystal-field anisotropy $\Delta_{\rm CF} \approx 200$ K along local [111] axis $\Rightarrow \mathbf{S}_i \approx \sigma_i \mathbf{e}_i$ at $T \sim 10$ K, Classical Ising spins $\sigma_i = \pm 1$.

• a simple Spin-ice Hamiltonian:

$$H = -J_F \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j = +\frac{J_F}{3} \sum_{\langle ij \rangle} \sigma_i \sigma_j = +\frac{J_F}{6} \sum_{\boxtimes} \sigma_{\boxtimes}^2.$$

 \Rightarrow Ising antiferromagnet on the pyrochlore lattice

Evidence of ice-rule (residual entropy):

Why 'dipolar' spin ice obeys ice rule ?

• A realistic Hamiltonian: $(J \approx 1 \sim 2 \text{ K and } D \approx 1.4 \text{ K})$

$$H = \frac{J}{3} \sum_{\langle ij \rangle} \sigma_i \sigma_j + \frac{Da^3}{2} \sum_{ij} \sigma_i \sigma_j \begin{bmatrix} \mathbf{e}_i \cdot \mathbf{e}_j \\ \mathbf{r}_{ij}^3 \\ \mathbf{r}_{ij}^5 \end{bmatrix} - \frac{3(\mathbf{e}_i \cdot \mathbf{r}_{ij})(\mathbf{e}_j \cdot \mathbf{r}_{ij})}{r_{ij}^5} \end{bmatrix}$$

exchange
interaction E_{ex} dipolar
interaction E_{dip}

• For spins $\{\sigma_i\}$ satisfy ice rules: $\sum_{i \in \boxtimes} \sigma_i = 0$ for all \boxtimes . $\Rightarrow E_{\text{ex}}(\{\sigma_i\}) = \text{const.}$

However, Why is the dipolar energy also almost the same, $E_{\text{dip}}(\{\sigma_i\}) \approx \text{const } ??$

Dumbbell Picture

Why is the long-range dipolar interaction (almost) irrelevant?

- $H \Rightarrow \sum_{\substack{\alpha \\ \boxtimes}} \frac{v_0}{2} \stackrel{\circ}{\xrightarrow{}} replace each dipole \vec{d} by two equal independent charges \pm q separation of the bond length <math>q = d/a$ $\stackrel{\circ}{\xrightarrow{}} H_{quad} + H_{quad}$ • renormalize the onsize Colomb interaction so as to give the correct neuroinhour interaction between dipoles:
 - $Q_{\mathbf{a}} \equiv \sum_{i \in \alpha} \sigma_i : \text{magnetic} \underset{v(r_{ij}) \equiv}{\text{charge}} e^{\frac{\mu_0}{4} \frac{q_i \beta_j}{O_i}}_{a} \text{tetrahedron} \quad \substack{i \neq j \\ v_o(\frac{\mu}{a})^2 = \frac{J}{3} + 4\frac{D}{3}(1 + \sqrt{\frac{2}{3}})}_{i = j},$
- Low-energy states: $Q_{\alpha} = 0 \Rightarrow 2$ -in-2-out ice rule !
- Thanks to projective equivalence, this dumbell model reproduces the energy.
- $H_{quad} \sim \mathcal{O}(1/r_{\alpha\beta}^5)$ responsible for the low-T magnetic ordering.

Fractionalization: Magnetic Monopoles

(C. Castelnovo *et al.* Nature 2008) (Z. Nussinov *et al.* PRB 2006).

Observing monopoles

Dirac quantization: monopole charge: $q_m = \frac{2\mu}{a} \approx \frac{q_D}{8000}$. $(eq_D = \frac{nh}{\mu_0}, n = 0, 1, 2, \cdots)$ \Rightarrow Difficult (but not impossible) to observe directly.

Is the ice phase really 'featureless' ?

Emergent Gauge structure

Emergent Coulomb phase

Ice rule $\Rightarrow \sum_{i \in \boxtimes} \sigma_i = 0$ (Ising spins) (Isakov *et al.* PRL 2004) (C. Henley PRB 2004) $\Rightarrow \nabla \cdot \mathbf{B}(\mathbf{r}) = 0$ (coared-grained approx)

• emergent magnetostatics (Coulomb phase):

 $Z = Z_0 \int \mathcal{D}\mathbf{B}(\mathbf{r}) \prod_{\mathbf{r}} \delta\left(\nabla \cdot \mathbf{B}(\mathbf{r})\right) e^{-\int d^3 \mathbf{r} \, \frac{k}{2} |\mathbf{B}(\mathbf{r})|^2}$ $= Z_0' \int \mathcal{D}\mathbf{A}(\mathbf{r}) e^{-\int d^3 \mathbf{r} \frac{k}{2} |\nabla \times \mathbf{A}(\mathbf{r})|^2} \quad (\mathbf{B} = \nabla \times \mathbf{A})$

• Dipolar correlation: $\langle B_i(\mathbf{r}) B_j(0) \rangle \approx \frac{4\pi}{k} \frac{3x_i x_j - r^2 \delta_{ij}}{r^5}.$ $\Rightarrow \text{Pinch-pint singularity}$

in structure factor:

Transition out of Coulomb phase

- Residual quadrupolar interaction \Rightarrow 1st-order transition to a q = (001) magnetic order.
 - (R. Melko et al. 2001)
- Coupling to electrons (RKKY): \Rightarrow 1st-order transition to a q = (001) magnetic order
 - (A. Ikeda & H. Kawamura, 2008)
- Magnetic field $H \parallel [001]$ \Rightarrow Kasteleyn transition to a q = 0 magnetic order.
- Uniaxial pressure \Rightarrow infinite-order transition to a q = 0 magnetic order.

(L. Jaubert et al. 2008, 2010)

Other 'ice' models: Klein S-1/2 model

• Klein spin-1/2 model on pyrochlore lattice:

(Z. Nussinov, C. D. Batista, B. Normand, & S.A. Trugman, PRB 2007)

$$H_K = J \sum_{\boxtimes} \mathcal{P}^{S_{\boxtimes}=2} + \cdots$$

• Ice rules \Rightarrow hard-core dimer covering:

• Fractionalized excitations: Deconfined spinons (monopoles) in 3D.

Other 'ice' systems: magnetic nano-arrays

• Artificial spin ice in 2D square and kagome lattices:

checkerboard ice

1 µm

More artificial ices:

A. Libál, C. Reichhardt,& C. J. Olson Reichhardt (PRL 2006)

 charged colloidal particals on arrays of optical traps

• vortices in nanostructured superconductors

A. Libál, C. J. Olson Reichhardt,& C. Reichhardt (PRL 2009)

Kagome vs. Pyrochlore spin ice • Minimizing magnetic charges Q: $\Rightarrow Q_{\triangle} = \pm 1$ in kagome vs. $Q_{\boxtimes} = 0$ in pyrochlore • Two-stage ordering in kagome spin ice. (G.-W. Chern *et al.*, PRL 2011) ordering of magnetic charges Q_{\triangle} Rln2 1 14 $\begin{array}{c} \mathrm{S}(\mathrm{T}) & \mathrm{U} & \mathrm{I} \mathrm{Mol}^{-1}\mathrm{K}^{-1} \\ \mathrm{S} & \mathrm{U} & \mathrm{U} \\ \mathrm{S} & \mathrm{U} \end{array}$ 1.75 (a) 1.50 $12 \cdot$ 0.8 1.25 1.00 $\ln 2$ C/T (J mol⁻¹K⁻²) ` 10 -0.75 0.6 0.50 8 0.25 $s_{\rm ice} \approx 0.5014$ 0.00 .ż .3 6 0.4 2'37 8 10 4 · Т (\mathbf{K}) 0.2 2 0 0 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.01 0.1 100 10 1 T (K) T/D magnetic magnetic crossover crossover transition transition to spin ice to spin ice

New frustrated systems on cold-atom optical lattices

- Increasing $U/t \Rightarrow$ Mott-insulating phase of cold atoms.
- Loading *spinless* (or polarized) fermions: 2 atoms per site.

 $\Rightarrow \text{Remaining degrees of freedom:} \\ \text{localized orbitals } (p_x, p_y, \text{ and } p_z). \end{cases}$

• Exchange Hamiltonian: $|\mathbf{\hat{n}}\rangle = \hat{n}_x |p_x\rangle + \hat{n}_y |p_y\rangle + \hat{n}_z |p_z\rangle$ $H_{ij} = -J \left[P_i^{\mathbf{\hat{n}}} (1 - P_j^{\mathbf{\hat{n}}}) + (1 - P_i^{\mathbf{\hat{n}}}) P_j^{\mathbf{\hat{n}}} \right]$

 $P^{\mathbf{\hat{n}}} = |\mathbf{\hat{n}}\rangle\langle\mathbf{\hat{n}}|$: Projection operator of active orbital along $\mathbf{\hat{n}}$

2D Square and honeycomb lattices

• Square lattice: AF Ising model

$$H = J \sum_{\langle ij \rangle} \tau_i \tau_j \qquad \tau_i = \begin{cases} +1 & : p_x \\ -1 & : p_y \end{cases}$$

Néel order

• Honeycomb lattice: Quantum 120° model:

- residual entropy: $s_0 \approx 0.59 \, k_B$
- disordered orbitals.
- exponential orbital correlation:

 $C_{\tau}(L) \sim \exp(-L/\xi)$

P-band Mott insulator on diamond lattice

• there are 4 distinct n.n. bonds:

 $\hat{\mathbf{n}}_0 = [111], \ \hat{\mathbf{n}}_1 = [1\overline{1}\overline{1}],$ $\hat{\mathbf{n}}_2 = [\overline{1}1\overline{1}], \ \hat{\mathbf{n}}_3 = [\overline{1}\overline{1}1]$

• orbital projectors along the 4 neighbors:

$$P_m = \frac{1}{3} \left(\hat{1} + \sqrt{3} \,\vec{\mu} \cdot \hat{\mathbf{n}}_m \right)$$

• pseudovector $\vec{\mu} = (\mu_x, \mu_y, \mu_z)$

 \Rightarrow Quantum 'tetrahedral' Hamiltonian for pseudovectors $\{\vec{\mu}_i\}$:

$$H_{\text{ex}} = J \sum_{m=0}^{-} \sum_{\langle ij \rangle \parallel \hat{\mathbf{n}}_{m}} \left(\vec{\mu}_{i} \cdot \hat{\mathbf{n}}_{m} \right) \left(\vec{\mu}_{j} \cdot \hat{\mathbf{n}}_{m} \right)$$

 $([\mu_{\alpha},\mu_{\beta}] \neq 0, \text{ for } \alpha \neq \beta)$

$$\mu_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\mu_y = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

 $\mu_z = \left(\begin{array}{rrr} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right)$

Mean-field ground states

• Gutzwiller products ansatz:

$$|\Psi\rangle = \prod_{i=1}^{N} \otimes |\theta_i, \phi_i\rangle$$

• Single-site wavefunction:

- $\begin{aligned} |\theta,\phi\rangle &= \sin\theta\cos\phi|p_x\rangle + \sin\theta\sin\phi|p_y\rangle + \cos\theta|p_z\rangle \\ &\Rightarrow \langle \vec{\mu} \rangle = \left(\sin 2\theta\sin\phi, \ \sin 2\theta\cos\phi, \ \sin^2\theta\sin 2\phi\right) \end{aligned}$
- Monte Carlo minimization of $E_{\rm mf} = \langle \Psi | H_{\rm eff} | \Psi \rangle$:
 - Macroscopic degeneracy of Gutzwiller ground states.
 - pseudovector $\langle \vec{\mu}_i \rangle = \pm \vec{x}, \pm \vec{y}$, and $\pm \vec{z}$ in the ground state.

 μ^x -

 μ^z

- Each bond $\langle ij \rangle$ has exact energy $E_{ij} = -J/3$.

Ground-state structure:

• Orbitals in the ground states:

 $|\pm \vec{x}\rangle = |p_y\rangle \pm |p_z\rangle \quad |\pm \vec{y}\rangle = |p_z\rangle \pm |p_x\rangle \quad |\pm \vec{z}\rangle = |p_x\rangle \pm |p_y\rangle$

 $\sigma_i^3 = +1$ $\sigma_i^2 = -$

 $\cdot z$

 $\sigma_i^0 = +1$

 $\sigma_i^1 = -1$

- - Ising variables for the 4 bonds attached to site \mathbf{r}_i :

$$\sigma_i^m = \sqrt{3} \langle \hat{\mathbf{n}}_m \cdot \vec{\mu}_i \rangle = \pm 1$$
$$(m = 0, 1, 2, 3)$$

• Ground-state constraint:

 $\sigma_i^m \sigma_j^m = -1, \quad \forall \langle ij \rangle$ ('ice' rule for orbitals !)

Exact Eigenstates

- Ground-state conditions:
 - 1. Cubic anisotropy: $\langle \vec{\mu}_i \rangle = \pm \vec{x}, \pm \vec{y}, \text{ and } \pm \vec{z}.$
 - 2. $\{\sigma_i^m\}$ satisfy Ice rules: $\sigma_i^m \sigma_j^m = -1 \quad \forall \langle ij \rangle.$

• The extensively degenerate Gutzwiller states:

 $|\Psi\rangle = |+\vec{x}\rangle_1 \otimes |-\vec{y}\rangle_2 \otimes |-\vec{x}\rangle_3 \otimes |+\vec{z}\rangle_4 \otimes |+\vec{y}\rangle_5 \otimes \cdots$

are *exact* eigenstates of the orbital exchange Hamiltonian ! $H_{\rm ex}|\Psi\rangle=-\frac{2}{3}NJ|\Psi\rangle$

also confirmed by exact diagonalization.

Mapping to pyrochlore spin ice:

- How to characterize the degeneracy of the Gutzwiller ground states ?
- *Pyrochlore* is the "medial" lattice of the diamond structure \Rightarrow placing spins at the *bond midpoints* of diamond lattice.

• a 1-to-1 mapping of orbital ground state and spin-ice state on pyrochlore !

Orbital Coulomb phase (orbital ice)

• The six cubic directions of $\langle \vec{\mu} \rangle$ are mapped to the six 2-in-2-out ice states.

- Pauling estimate of entropy density: $s_0 = k_B \ln \frac{3}{2} \approx 0.405 k_B$
- Dipolar-like power-law orbital correlations: The pseudovector plays the role of the emergent 'magnetic field':

$$\mathbf{B}(\mathbf{r}_i) \approx \pm \langle \vec{\mu}_i \rangle \quad \Rightarrow \quad \text{ice rule: } \nabla \cdot \mathbf{B}(\mathbf{r}) = 0$$
$$\langle \mu_i(\mathbf{r}) \, \mu_j(0) \, \rangle \sim \pm \frac{3x_i x_j - r^2 \delta_{ij}}{r^5} \sim \frac{1}{r^3}$$

Orbital correlation functions

- Classical Monte Carlo simulations with non-local 'loop' updates on pyrochlore spin ice
- Correlation function $C_{\mu}(r) = \langle \vec{\mu}(\mathbf{r}) \cdot \vec{\mu}(0) \rangle$

Conclusion and Outlook

- A orbital analog of ice.
- a first example of orbital Coulomb phase.
- could possibly be realized in optical diamond lattice.
- *Exact* many-body ground states which form a degenerate ice-manifold of a nontrivial quantum Hamiltonian.

 $|\Psi\rangle = |+\vec{x}\rangle_1 \otimes |-\vec{y}\rangle_2 \otimes |-\vec{x}\rangle_3 \otimes |+\vec{z}\rangle_4 \otimes |+\vec{y}\rangle_5 \otimes \cdots$

- \Rightarrow Experimental signature of orbital ice: structure factor, time-of-flight measurement ...
- $\Rightarrow (exact) Elementary excitations ?$ Monopole-like quasiparticles ?