Magnetization plateaus in frustrated quantum magnets

Pinaki Sengupta Nanyang Technological University Singapore

Collaborators

- Cristian Batista, LANL
- Naoki Kawashima, ISSP, U. Tokyo
- Takafumi Suzuki, U. Hyogo
- Keola Wierschem, NTU

- Neil Harrison, LANL,
- Suchitra Sebastian, Cam. U.

Outline

- Geometric frustration and novel magnetic phenomena.
- $SrCu_2(BO_3)_2$ and the Shastry-Sutherland Model.
- Field-induced magnetization plateaus.
- Chen-Simons theory.
- New family of Shastry-Sutherland compounds and the generalized Shastry-Sutherland model.

Geometric frustration

Geometric frustration

□ Not all interactions are simultaneously minimized

□ Key element in the study of quantum magnets

Rich variety of phases

Spins with AFM interactions

Novel phases and phenomena induced by geometric frustration

✓ Dimensional reduction at a quantum critical point in Han Purple

✓ Spin supersolid phase in Heisenberg antiferromagnets

✓ Spin liquid phases

Shastry-Sutherland Lattice

Archimedes, circa. 250 BC:

Thought of tiling the 2D plane with symmetric polygons Johannes Kepler, 1619 AD:

Listed the different Archimedean lattices

T6: $3^2.4.3.4 = SrCuBO$

T7: 3.4.6.4 =bounce

T8: 3.6.3.6 = kagomé

Lattice of interest

Shastry-Sutherland Model

$$H = \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - B \sum_i S_i^z$$

S=1/2 spins with Heisenberg AFM interactions Exact ground state for J/J' > 1.35:

Ground state is a direct product of singlets on the diagonals

NANYANG TECHNOLOGICAL UNIVERSITY

B. Sutherland & B. Shastry, *Physica* **108B** 1069-1070 (1981).

SrCu₂(BO₃)₂

R. W. Smith and D. A. Keszler, J. Solid State Chem. **93**, 430 (1991).

SrCu₂(BO₃)₂: SSL magnetic lattice

Topologically equivalent

SrCu₂(BO₃)₂: Cu²⁺ ions arranged in a SSL lattice

ctivated behavior \implies spin-gapped ground state

Estimated parametrs: -74K I' = 0.62I $I/I' \sim$

 $J = 74K \quad J' = 0.62J \quad J/J' \simeq 1.62$

Consistent with a singlet ground state

Dzyaloshinsky-Moriya interaction

G. A. Jorge, et. al., Phys. Rev. B 71, 092403 (2005)

The SSL model in an applied field

Lowest energy excitations: singlet → triplet

At sufficiently strong fields, the system has finite density of triplets finite magnetization, M(H)
 Because of frustration, the triplets are extremely immobile

Single triplet hopping: 6th order in J'/J

hopping in 6th order of x=J'/J \Rightarrow almost no dispersion $t_1 - \frac{x}{t_0} = t_1 + t_0 = t_1 + t_0 = t_1 + t_0 = t_1 + t_1 = t_1 + t_1 = t_1 = t_1 = t_1 = t_1 = t_1$

Miyahara & Ueda, PRL 82, 3701 (1999).

Experimental signatures

□ Flat dispersion in inelastic neutron scattering

Novel magnetization plateaus; commensuration energy gain from regular pattern of triplets

Previous Results

Treat triplets as a gas of classical particles

Cannot capture any longer range density modulation

Keep only the S^z=1 triplets and the effective _"repulsive" terms to 3rd order in J'/J

T. Momoi and K. Tosuka, PRB 62, 15067 (2000).

Previous Results (contd.)

$$V(r) = V_n(V'_n)$$
 if $n = 1, 2, 3$

$$V(r) = V_0 \frac{e^{-r/\xi}}{r}$$
 for others

 N_d =16,20,26,32,36 for square unit cells and N_d =24,32 for rectangular cells.

Miyahara & Ueda: J. Phys.: Condens. Matter 15 R327 (2003)

Chern Simons theories

FIG. 1. Comparison between the magnetization curve of measured by Onizuka *et al.* (dashed line) and the mean-field result (solid line). Inset: Shastry-Sutherland lattice. The exchange interaction is on black links and on the dotted ones. Best agreement with experimental data

Map spins to spinless fermions via C-S theory

 Assume uniform local magnetization

Not consistent with expt. or intuitive picture

NMR at the 1/8 plateau

At least 11 different sites!

K. Kodama, et. al. , Science '02

NMR at the 1/8 plateau

Magnetization profile at 1/8

- Magnetization opposite to field
- Magnetization in field direction

Symmetry breaking

16 sites/unit cell 8-fold degenerate GS

Lattice distortion: selection of one ground state

K. Kodama, et. al. , Science '02

New Measurement of M vs. H

Complete 1/n series of plateaus revealed

Previous measurements were at > 150 mK
 Plateaus rounded due to D-M interaction

S. Sebastian, et.al., Proc. Natl. Acad. Sci (USA) 105, 2057 (2009)

Experimental Phase Diagram

Fine structure due to competing energy scales

0.08

- Consequence of interplay between strong interactions, frustration
- How do we identify these phases?

1/n hierarchy of magnetization plateaus

Theoretical challenge: explain the emergence of the plateaus from a microscopic model

Start with the C-S theory and improve on it

Chern-Simons theory: S=1/2 to spinless fermions

$$H = \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j - B \sum_i S_i^z$$
Matsubara-Matsuda
$$\mathbf{I} \qquad \mathbf{S} = 1/2 \text{ to hard-core bosons}$$

$$H = \sum_{ij} \frac{J_{ij}}{2} (b_i^{\dagger} b_j + b_j^{\dagger} b_i) + J(n_i - 1/2)(n_j - 1/2) - B \sum_i n_i$$
Jordan-Wigner
$$\mathbf{I} \qquad \text{hard-core bosons to spin-less fermions}$$

$$H = \sum_{i,j} \frac{J_{ij}}{2} (f_i^{\dagger} e^{iA_{\mu}(i)} f_j + f_j^{\dagger} e^{-iA_{\mu}(i)} f_j) + J_{ij}(n_i - \frac{1}{2})(n_j - \frac{1}{2}) - B \sum_i n_i$$
Aharonov-Bhom
effect
$$\mathbf{I} \qquad \text{The bosonic statistics is}$$

$$H = \sum_{i,j} \frac{J_{ij}}{2} (f_i^{\dagger} e^{iA_{\mu}(i)} f_j + f_j^{\dagger} e^{-iA_{\mu}(i)} f_j) + J_{ij}(n_i - \frac{1}{2})(n_j - \frac{1}{2}) - B \sum_i n_i$$

G. Misguich, T. Jolicoeur and S. M. Girvin, Phys. Rev. Lett. 87, 097203 (2001).

Т

Mean Field: the flux is uniformly distributed over the whole lattice

Statistical flux Φ smeared out and treated as a mean field (Chern Simons treatment). $\phi = 2\pi\rho$

Applied magnetic field = chemical potential ⇒controls total number of fermions ⇒determines the total statistical flux

Hofstadter Butterfly

- Energy levels of the non-interacting part of the Hamiltonian
- The total flux is determined by the net magnetization (fermion density)
- Gaps at the plateaus

Uniform Incompressible Solutions: Incomplete Picture

Uniform Mean Field:

$$J_{ij}n_in_j \to J_{i,j}\rho^2$$

Optimal ratio: J'/J = 2.2

Need to consider densitydensity interactions: translational symmetrybreaking

NANYANG TECHNOLOGICAL UNIVERSITY

K. Kodama et al. Science 298 395 (2002)

Chern-Simons Theories: M vs. H

S. Sebastian, et.al., Proc. Natl. Acad. Sci (USA) 105, 20157 (2009)

Crystal obtained for the 1/8 plateau

Stripe superstructures modulate underlying short-range structures

- Example density profile for m_z/m_{sat} = 1/8
- Stripe superstructures
- Underlying clusters of polarized dimers

Crystals obtained for each plateau

Stripe superstructures modulate underlying short-range structures

Other realizations of the SSL model

Rare earth tetraborides and R2T2M

TbB_4	xy	$40^{0}K$
DyB_4	$Quadrupolar \ order$	$15^{0}\mathrm{K}$
TmB_4	Isinglike	11.7 ⁰ K
HoB_4	Isinglike	7^0K
ErB_4	Isinglike	$15^{0}K$
Yb_2Pt_2Pb	mixed(FM + AFM)	$2^{0}K$

Rare earth tetraborides

Generic features

- Low saturation field (~ 10T) low-T neutron scattering possible
- Span wide parameter regime including magnetic ground state at zero field
- Additional interactions
- <u>Extensive insight into the interplay between competing strong</u> interactions and geometric frustration in the Shastry-Sutherland lattice
- Metallic ground state interaction of itinerant electrons with localized magnetic moments in a frustrated configuration interesting magneto-electric effects

Magnetization Plateaus in TmB₄

Stripe superstructures modulate underlying short-range structures

K. Siemensmeyer et. al., PRL 101, 177201 (2008)

Low energy effective model for TmB₄

- > Large magnetic moment for Tm^{3+} : S = 6
- > Large single-ion anisotropy: $-D(S_i^z)^2$, $D_J \approx 50$

 $S^z = \pm 4$

Effective low energy model involving the lowest 2 levels

$$\begin{split} H = \sum_{\langle i,j \rangle} J^z_{ij} S^z_i S^z_j + J^{xy}_{ij} (S^x_i S^x_j + S^y_i S^y_j) \\ J^{xy}_{ij} < 0 \qquad J^z_{ij} \gg |J^{xy}_{ij}| \quad \text{Ising limit} \\ \end{split}$$

Ferromagnetic exchange term – sign problem in QMC simulations alleviated

Low energy effective model for TmB₄

Start with the Shastry Sutherland model in the Ising limit

Need additional interactions

Ferromagnetic 3^{rd} neighbor interaction necessary to explain plateau structure observed in TmB₄.

PRB <u>80</u>, 180405 (2009); PRB <u>82</u>, 214404 (2010)

Generalized Shastry-Sutherland model

- S=1/2 XXZ model with large Ising anisotropy
- J and J' along the SSL lattice axes
- Additional 3rd neighbor interaction (FM or AFM)

- NNN interaction along the diagonals of the plaquettes with no J
- > Same anisotropy for all interactions.
- □ Rich variety of magnetic phases

Potentially realized in the different members of the rare-earth tetraborides

Magnetization plateaus in the generalized SSL model

Different sequence of plateaus as the parameters are varied

Modeling TmB₄

 ✓ Correct critical values for the m/ m_s=1/2 reproduced

- No evidence of lower magnetization plateaus for the current model
- ✓ No evidence for "hysteresis" effects.

Conclusions

- Interplay between geometric frustration, strong interaction and high magnetic field results in many novel quantum phases.
- One example is the novel sequence of 1/n plateaus discovered in SrCu₂(BO₃)₂.
- The emergence of the plateaus are qualitatively reproduced by the Chern Simons theory.
- The theory predicts a given sequence of crystals associated with each plateau. This can be tested with NMR and INS.
- New family of Shastry-Sutherland compounds hold great promise.

