Angle-resolved photoemission spectroscopy (ARPES)

Experimental study of the electronic structure of strongly-correlated electron systems

Andrés Felipe Santander-Syro

Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse

Université Paris-Sud

- <u>C. Bareille</u>, F. Fortuna (CSNSM Orsay)
- F. Boariu, M. Klein, A. Nüber, F. Reinert (Uni-Würzburg)
- P. Lejay (Institut Néel Grenoble)
- O. Copie, M. Bibes, N. Reyren, A. Barthélémy (UMPhy Thales)
- T. Kondo (Ames-Lab)
- F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fèvre (SOLEIL)
- Y. Apertet, P. Lecoeur (IEF Orsay)
- S. Pailhès (CEA Saclay)
- X. G. Qiu (Chinese Academy of Sciences)
- G. Herranz (ICMAB Spain)
- R. Weht (CNEA Argentina)

<u>M. J. Rozenberg</u>, M. Gabay (LPS – Orsay)

Condensed (crystalline) matter in a nutshell

Allowed electronic states Many **properties of solids** are determined Repeated-zone scheme by electrons within a **narrow energy slice** $(\sim k_B T)$ around E_F (dc conductivity, k_F $-k_{\rm F}$ magnetism, superconductivity...) \rightarrow Fermi Surface EF KY Brillouin Zone Boundary 3D KY 2π 2π er Fermi Leve 2D**First** Second Second Brillouin Brillouin Brillouin 1D

Adapted from A. Damascelli's *Exciting-2003* lecture and E. Rotenberg's lecture

zone

zone

zone

Room temperature: $k_B T = 25$ meV

 \rightarrow Best for 2D or 1D systems

F. Reinert and S. Hüfner, New Journal of Physics 7, 97 (2005)

ARPES with He-lamp Würzburg University (DE) (F. Reinert's team)

ARPES with synchrotron radiation

Synchrotron Radiation Center University of Wisconsin – Madison (USA)

Example of state-of-the art ARPES: The hidden-order transition in URu₂**i**₂

ARPES view across the transition

AFSS, M. Klein, F. L. Boariu, et al., Nature Physics 5, 637 - 641 (2009)

Photoemission in the N-electron system: theoretical snapshot

Photoemission intensity given by Fermi's golden rule:

$$I(\mathbf{k},\varepsilon) \propto \frac{2\pi}{\hbar} \left| \left\langle \Psi_{f}^{N} \middle| H_{int}^{(N)} \middle| \Psi_{i}^{N} \right\rangle \right|^{2} \delta \left(E_{f}^{N} - E_{i}^{N} - h\nu \right)$$

Matrix element:
• k-conservation
• Symmetries
• Symmetries

 $|\Psi_i^N\rangle$ N-electron ground state (energy E_i^N) of unperturbed Hamiltonian

 $|\Psi_f^N\rangle$ Excited state (energy E_f^N) of unperturbed Hamiltonian: N-1 electrons in the solid + 1 free electron of energy ε and momentum **k**

Light-matter interaction: perturbation theory + dipole approximation

$$H_{int}^{1-e} \approx \frac{e}{2mc} [\mathbf{A}(\mathbf{r}) \cdot \mathbf{p} + \mathbf{p} \cdot \mathbf{A}(\mathbf{r})] \approx \frac{e}{mc} \mathbf{A} \cdot \mathbf{p}$$

Dipole approximation: A constant over atomic dimensions

 $[\mathbf{p}, \mathbf{A}] = i\hbar \nabla \cdot \mathbf{A} \approx 0$

- true in the UV for electrons in the bulk
- not necessarily true at the surface
 - \rightarrow indirect transitions interfering with bulk transitions
 - \rightarrow asymmetric line-shapes

Electron escape to the surface

 λ_{esc} (E_{kin})= Electron escape depth (average distance traveled by electron without inelastic scattering)

→ ARPES is a surface technique: one needs clean surfaces + work under ultra-high vacuum (better than 10⁻⁹ Torr).

Furthermore, one has to make sure that the photoemission process itself does not modify the electronic structure of the material...

SUDDEN APPROXIMATION

The ejected electron should be "fast enough" to neglect its interaction with the hole left behind

 $\rightarrow E_{kin}$ must be large \rightarrow hv must be large

 \rightarrow Final state = Plane wave in the vacuum

Photoemission: many-body effects

"loss" of kinetic photoelectron energy due to excitation energy stored in the remaining interacting system

- Shift in energy of the main photoemission line
- **Broadening** of main line (life-time of excited interacting system)
- **Transfer of spectral-weight** to higher binding energies (excitations of the remaining interacting system)

Spectra analysis

$$|E_B| \equiv \hbar \omega, \hbar = 1$$

$$I(\mathbf{k},\omega) = I_0(\mathbf{k},\nu,\mathbf{A})f(\omega)A(\mathbf{k},\omega)$$

 $A(\mathbf{k},\omega)$ = Probability of adding or removing one electron at (\mathbf{k},ω)

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k},\omega)}{[\omega - \varepsilon_{\mathbf{k}} - \Sigma'(\mathbf{k},\omega)]^2 + [\Sigma''(\mathbf{k},\omega)]^2}$$

 $\left.\begin{array}{c} \Sigma' \rightarrow \text{Energy renormalization} \\ \Sigma'' \rightarrow \text{Lifetime of dressed e}^{-} \end{array}\right\} \text{Many-body physics}$

Interaction effects on ARPES spectra

$$A(\mathbf{k},\omega) = -\frac{1}{\pi} \frac{\Sigma''(\mathbf{k},\omega)}{[\omega - \varepsilon_{\mathbf{k}} - \Sigma'(\mathbf{k},\omega)]^2 + [\Sigma''(\mathbf{k},\omega)]^2}$$

 $A(\mathbf{k},\omega)$ = Probability of adding or removing one electron at (\mathbf{k},ω)

 $I(\mathbf{k},\omega) = I_0(\mathbf{k},\nu,\mathbf{A})f(\omega)A(\mathbf{k},\omega)$

Many-body physics – Effects of the interactions on the band structure: Example of surface states of Mo(110)

T. Valla *et al.*, PRL **83**, 2085 (1999)

ARPES: Effects of orbital symmetries

Example: subbands with orbital order at the

10K LH

Summary of ARPES technique

When it works...

ARPES is a powerful technique for the study of the electronic structure of complex systems

- → Detailed band structures and Fermi surfaces
- \rightarrow Fermi velocity and effective mass
- → Gaps
- → Many-body effects

Rapidly developing...

- → Spin-resolved ARPES
- → Time-resolved ARPES
- \rightarrow Micro-ARPES
- → Laser-ARPES using UV/X-ray lasers (HHG in noble gases)
- → Ultra-high resolution ARPES using TOF detector

Superficially metallic A 2D electron gas with universal subbands at the surface of SrTiO₃

Preliminaries:

A 2D metal that spontaneously forms at the interface between two insulators

High-mobility 2DEG at the LaAlO₃/SrTiO₃ interface

A. Ohtomo and H. Y. Hwang, Nature 427, 423 (2004).

$LaAIO_3$:

Band insulator $\Delta = 5.6 \text{ eV}$

SrTiO₃:

Band insulator (quantum paraelectric)

 Δ = 3.2 eV

Why so important?

 \rightarrow 2DEGs (*e.g.* at semiconductor interfaces) are the first step in the design of useful micro-electronic devices, like FETs.

 \rightarrow SrTiO₃ is the preferred substrate to grow thin films of transitionmetal oxides.

→Transition-metal oxides have properties that surpass those of semiconductors: high-temperature superconductivity, colossal magnetoresistance, high thermoelectric power *with* good conductivity, multiferroic behavior, ...

 → Possibility of combining two or more of these functionalities in a single device through (multi)-thin films of transition metal oxides.
 A 2DEG at the interface provides a conduction channel.

→ Controllable systems to study fundamental aspects of the physics of transition-metal oxides, which are often "strongly-correlated electron systems".

Heteropolar interfaces based on STO: OPEN QUESTIONS

- \rightarrow What is the origin of the metallic electron gas?
- \rightarrow What is its thickness?
- \rightarrow What is its dimensionality? (2D, 3D; *i.e.*, can d_{gas} < λ_F)

→ What is (are) the mechanisms responsible for (super)conductivity and high mobility?

Extension of 2DEG at LAO/STO interface

M. Baslestic et al., Nature Materials 2008, doi: 10.1038/nmat2223

Metallic 2DEG can also be induced by electrostatic doping of the pure STO surface

Scenarios invoked

- Oxygen vacancies
- Polar catastrophe (build-up of electric field due to the polar LaO layer)
- Electronic reconstruction (charge leakage between LaTiO₃ and SrTiO₃)
- Atomic diffusion
- Surface reconstruction to avoid polar catastrophe

Surprise ... surprise!

 \rightarrow A 2DEG spontaneously forms at the vacuum-cleaved surface of SrTiO₃

→ Subband structure, carrier density, confinement size similar to those found in other STO-related interfaces

→ For this 2DEG, the mechanism is well understood → door wide open to generate novel 2DEGs in other oxides!

SrTiO₃: bulk vs 2D-confined electronic structure

Metallic 2DEG at the surface of insulating SrTiO₃

SrTiO₃: universal electronic structure at the surface

AFSS et al, Nature 469, 189-193 (2011)

SrTiO₃: summary of subbands for the surface 2DEG

AFSS et al, Nature 469, 189-193 (2011)

AFSS et al, Nature 469, 189-193 (2011)

Confinement potential and size of 2DEG:

T. Ando, A. B. Fowler, and F. Stern, Rev. Mod. Phys. 54, 437-672 (1982).

$$E_{n} = -V_{0} + \left(\frac{\hbar^{2}}{2m_{z}^{*}}\right)^{1/3} \left[\left(\frac{3\pi}{2}\right)\left(n - \frac{1}{4}\right)eF\right]^{2/3}$$

$$V(z) = -V_{0} + eFz$$

$$V(z) = -V_{0} + eFz$$

$$E = 0$$

$$F \approx 83 \text{ MV/m}$$

$$E_{I}(d_{xy}) = -210 \text{ meV} \rightarrow V_{0} \approx 260 \text{ meV}$$

$$eFL \approx \Delta E \rightarrow L \approx 14.5 \text{ Å} \approx 4 \text{ u.c.}$$

$$eFL_{max} = V_{0} \rightarrow L_{max} \approx 31 \text{ Å} \approx 8 \text{ u.c.}$$

$$4 \text{ u.c.} \leq L \leq 8 \text{ u.c.}$$

Carrier density from confinement potential:

- K. Ueno *et al.*, *Nature Mater.* **7**, 855 (2008).
- R. C Neville, B. Hoeneisen, and C. A. Mead. *J. Appl. Phys.* **43**, 2124 (1972).

$$\frac{e}{2}n_{2D} = \int_0^F \varepsilon_0 \varepsilon(F') dF'$$
$$\varepsilon(F) = \frac{1}{A + BF}$$

$$F [V/m]$$

 $A(4K) = 4.097 \times 10^{-5}$
 $B(4K) = 4.907 \times 10^{-10} \text{ m/V}$

→
$$n_{2D} \approx 0.25 \ e/a^2$$

Valence band bending due to O-vacancies at the vacuum-fractured surface of STO

Y. Aiura et al., Surface Science 515, 61-74 (2002)

Conclusions

 \rightarrow Observation of subband structure with orbital ordering at the bare surface of STO.

 \rightarrow Universal metallic 2DEG. Exists even at the surface of non-doped, bulk-insulating STO!

→ Characteristics of this 2DEG in quantitative agreement with 2DEGs in STO-based interfaces/heterostructures.

 \rightarrow Origin of the observed 2DEG: oxygen vacancies.