Spin transitions in strongly correlated materials

Jan Kuneš

DFG FOR 1346 Dynamical Mean-Field Approach with Predictive Power for Strongly Correlated Materials & GA CR P204/10/0284

Collaborators

V. Křápek

IoP Prague

V. I. Anisimov, A. V. Lukoyanov, D. M. Korotin, M. A. Korotin

P. Werner

W. E. Pickett, R. T. Scalettar

IoMP Yekaterinburg

ETH Zurich

UC Davis

Outline

- HS-LS transitions in models and materials
- Pressure-driven transition: MnO, Fe₂O₃
- HS/LS degeneracy: LaCoO₃
- Blume-Emery-Griffiths model in fermionic systems
- From cobaltites to manganites
- Conclusions

Models

Bulla et al. Phys. Rev. B **64**, 045103 (2001)

Mattila et al. Phys. Rev. Lett. 98, 196404 (2007)

MnO

d-electron in octahedral environment

Crystal-field splitting: electrostatic forces hybridization (band repulsion)

d-multiplets in octahedral field

Transition metal oxides- band structure

LDA bands for LaCoO₃

- hopping from TM ions mostly through oxygen
- p- e_g hybridization => broad e_g band CF splitting
- relative position of *d* and *p* bands not necessarily correct

Electron correlations and Hubbard model

• competition between kinetic and interaction energy: itinerancy vs localization

 localization -> large (quasi)degeneracy-> temperature (entropy) becomes important parameter

• emergence - new (non-fermionic) degrees of freedom appear, e.g. local spin, orbital-pseudospin -> possibility of new ordered states

• fluctuations of the emergent degrees of freedom - both quantum mechanmical and statistical

Dynamical Mean-Field Theory (LDA+DMFT)

A. Georges et al. Rev. Mod. Phys. 68, 13 (1996)

MnO experimental summary

- moment collapse
- insulator -> metal transition
- volume collapse
- structural transition

C. S. Yoo et al., Phys. Rev. Lett. 94, 115502 (2005)

Fe₂O₃ experimental summary

 $Fe_2^{3+}O_3^2 => d^5$ local configuration

Fe in octahedral coordination

Rosenberg et al., Phys. Rev. B 65, 064112 (2002)

Badro et al., Phys. Rev. Lett. 89, 205504 (2002)

Pressure driven spin state transition

JK et al., Nature Materials **7**, 198 (2008) JK et al., Phys. Rev. Lett. **102**, 146402 (2009)

Pressure induced metallization

Gap closing vs local spin state transition

Pressure induced transitions - summary

two scenarios:

- **local state transition** atomic physics dominates metallicity is slave to atomic constraints
- gap closing hopping plays active role in the transition

Energy scale: ~ 1 eV/atom

Pressure scale: 10-100 GPa (~ 1 GPa width)

What happens right at the transition?

What happens right at the transition?

LaCoO₃ - nature did the fine tuning job for us !

- d^6 state for Co³⁺ valence
- S=0 LS vs S=2 or 1 ? HS

•
$$E_{IS} \leq E_{HS}$$
 , $E_{HS} - E_{IS} \sim kT$

Two-band Hubbard model

$$\begin{split} H &= \sum_{i,\sigma} \left((\Delta - \mu) n_{i,\sigma}^a - \mu n_{i,\sigma}^b \right) + \sum_{\langle ij \rangle,\sigma} \left(t_{aa} a_{i,\sigma}^{\dagger} a_{j,\sigma} + t_{bb} b_{i,\sigma}^{\dagger} b_{i,\sigma} \right) \\ &+ U \sum_{i} \left(n_{i,\uparrow}^a n_{i,\downarrow}^a + n_{i,\uparrow}^b n_{i,\downarrow}^b \right) + \left(U - 2J \right) \sum_{i,\sigma} n_{i,\sigma}^a n_{i,-\sigma}^b \\ &+ \left(U - 3J \right) \sum_{i,\sigma} n_{i,\sigma}^a n_{i,\sigma}^b \end{split}$$

 Δ - crystal field

J/U - fixed

 Δ - crystal field

J/U - fixed

 Δ - crystal field

J/U - fixed

 Δ - crystal field

J/U - fixed

Gap closing

Band gap

Local state transition

E(HS)-E(LS) = 0'

The model - stoichiometric filling=2e

Two sublattice order allowed

Computational parameters:

$$W_a = 3.6$$

 $W_b = 0.4$

$$U=4, J=1$$

Unit cell:

Spin susceptibility and disproportionation

 Δ -3J=0.42 local susceptibility ****** Δ -3J=0.40 local susceptibility ****** local susceptibility (homog. ph.) ****** uniform susceptibility ******

Site occupancy n^a (upper band) Δ -3J=0.42 \bigstar Δ -3J=0.40 \bigstar

JK & Krapek, Phys. Rev. Lett. 106, 256401 (2011)

One-particle spectra

Low-energy model

Integrate out the charge fluctuations:

• keep 3 local states

Hamiltonian

$$\tilde{H} = \xi_0 \sum_{i,\sigma} n_{i,\sigma}^{\mathrm{HS}} + \sum_{\langle ij \rangle,\sigma} \left(\xi_1 n_i^{\mathrm{LS}} n_{j,\sigma}^{\mathrm{HS}} + \xi_2 n_{i,\sigma}^{\mathrm{HS}} n_{j,-\sigma}^{\mathrm{HS}} \right)$$
$$\xi_0 = \Delta - 3J, \, \xi_1 = -\frac{t_{aa}^2}{U-2J}, \, \xi_2 = -\frac{2t_{aa}^2}{U+J}$$

Mean-field free energy

$$F(T) = \frac{\xi_0}{2} (x_A + x_B) + 2\xi_1 (x_A + x_B - 2x_A x_B) - \xi_2 x_A x_B$$

+ $\frac{T}{2} (1 - x_A) \ln(1 - x_A) + \frac{T}{2} (1 - x_B) \ln(1 - x_B)$
+ $\frac{T}{2} x_A \ln(\frac{x_A}{2}) + \frac{T}{2} x_B \ln(\frac{x_B}{2}),$

Blume-Emery-Griffiths model

$$\tilde{H} = D \sum_{i} s_{i}^{2} + K \sum_{\langle ij \rangle} s_{i}^{2} s_{j}^{2} + I \sum_{\langle ij \rangle} s_{i} s_{j}$$

Blume et al., Phys. Rev. A 4, 1071 (1971)

Low-energy model

Hole doping

How do we from localized moments to double exchange picture?

localized magnetic polaron

itinerant hole in lower band

Conclusions

- (Quasi)degeneracy of ionic multiplets leads to rich phase diagrams in strongly correlated systems.
- Effective HS-LS attraction at the HS/LS transitions leads to a ordered state with reduced translational symmetry.
- 2-band Hubbard model with crystal field provides fermionic realization of BEG model and introduces new parameter doping
- Under certain circumstances ($W_a >> W_b$) doping leads to formation of inhomogeneities magnetic polarons