Charge dynamics in CuGeO₃: a combined RIXS study at O-K and Cu-L₃ edges

V. Bisogni, C. Monney, J. MalèK, S.-L. Drechsler, R. Kraus, K.J. Zhou, V. Strocov, J. van den Brink, B. Büchner, T. Schmitt and J. Geck

Acknowledgments

IFF Dresden:

Jochen Geck Roberto Kraus Martin Knupfer Bernd Büchner

ITF Dresden:

Jiri Malèk Krzysztoff Wohlfeld Liviu Hozoi Roman Kuziak Satoshi Nishimoto Stephan-L. Drechsler Jeroen van den Brink

Leibniz Gemeinschaft

SLS - PSI Villigen:

Claude Monney Kejin Zhou Vladimir Strokov Thorsten Schmitt

Université Paris-Sud : Alexandre Revcoleshi

ICAM-I2CAM : Travel expenses have been supported by I2CAM trough the NSF grant number DMR-0844115.

(ICAM-I2CAM, 1 Shields Avenue, Davis, CA 95616)

Outline

- Introduction to the case of CuO₂ plane
- System under study: CuGeO₃
- Experimental method: Resonant Inelastic X-ray Scattering (RIXS)
- Motivations: *d-d* excitations and Zhang-Rice singlet excitons
- Conclusions

Correlated electron systems: example of a CuO₂-plane

Correlated electron systems: example of a CuO₂-plane

Correlated electron systems: example of a CuO₂-plane

Correlated electron systems: example of a CuO₂-plane

- model compound of one-dimensional edge-sharing cuprate
- composed by the same unit as the high-T_c cuprates: CuO₄ plaquette

- $\theta = 99^{\circ} \Rightarrow \text{AFM J}_1 (\sim 160 \text{ K}) \text{ and AFM J}_2 (\alpha \cdot J_1 \sim 56 \text{ K})^*$
- Spin-Peierls transition at T_{sp} =14 K and dimerization starting at T<60K

*Fabricius et al., PRB 57, 1102 (1998)

Resonant Inelastic X-ray Scattering (RIXS)

- photon *in* photon *out*
- site and chemical selective
- energy loss: $\Delta E = h v_2 h v_1$
- momentum transfer **Q=k_o-k_i**
- in-plane Q projection: $\mathbf{q}_{\prime\prime} \propto \mathbf{Q} \cdot sin \delta$

*RIXS Review: L.J.K. Ament et al., arXiv1009.3630 (2010)

G. Ghiringhelli et al., Rev. Sci. Instrum. 77, 113108 (2006)

RIXS

- magnetic excitations (Δ S=0)
- *d-d* excitations

• magnetic excitations (Δ S=0,1)

Motivations

• intra-site *d*-*d* orbital excitations give information on the 3d valence band

• inter-site charge-transfer excitations (Zhang-Rice singlet exciton) give information on the magnetic correlation at the low energy scale

d-d excitations at Cu-L₃ edge

• *d-orbitals have strong spatial anysotropy*

 \rightarrow d-d excitations have strong \mathcal{E} dependence

• single ion model *+ *ab-initio* quantum chemical calculations**

Spin-charge excitations at O-K edge

E1

530

E3

531

photon energy (eV)

XAS

532

RIXS Energy resolution $\Delta E=60 \text{ meV}$

Temperature dependence

^{*} S. Atzkern et al., PRB 64, 075112 (2001); J.Kim et al., PRB 79, 094525 (2009)

V. Bisogni – IFW Dresden

NGSCES 2011

ZRS excitons T dependence

Peak C at 3.8 eV:

- Zhang-Rice singlet exciton*
- spectral weight depends on the nearest neighbor (NN) spin-spin correlation

Peak D at 4.6 eV

- Zhang-Rice object ⇔ same T trend as peak C
- What kind of ZR exciton?

* S. Atzkern et al., PRB 64, 075112 (2001); J.Kim et al., PRB 79, 094525 (2009)

O-K RIXS theory (by J. Malèk and S.-L. Drechsler, IFW Dresden)

Model:

- cluster of 3 plaquettes with open boundary conditions;
- *pd*-Hamiltonian^{*} based on 2p_x and 2p_y orbitals for O and 3d_{x2-y2} orbital for Cu;
- RIXS cross-section **:

$$\frac{d^2\sigma}{d\Omega_2 d\hbar\omega_2} \propto \sum_f \left| \sum_n \frac{\langle f|D^{\dagger}|n\rangle \langle n|D|i\rangle}{E_i - E_n + \hbar\omega_1 - i\Gamma_n/2} \right|$$

Temperature dependence:

- RIXS initial states ⇔ eigenstates which can be thermally polutated
- Δ S=0 at the O-K edge

* Y. Mizuno et al., PRB **57**, 5326 (1998)

 $\mathbf{2}$

** K. Okada et al., JPJS 76, 123706 (2007)

• fundamental RIXS spectra for CuGeO₃

Explanation 1:

Two ZRS peaks \rightarrow charge-transfer paths through Op_x and Op_y **Explanation 2:**

Two ZRS peak→ charge transfer path between nearest-neighbor (NN) and next-nearest neighbor (NNN)*

RIXS calculation on a dimer (two-plaquette cluster)

* Y. Matiks et al., PRL 103, 187401 (2009)

• 4.5 eV peak is present only in the trimer

\rightarrow NNN ZRS exciton

• trimer is the smallest cluster which describes

- deep understanding of d-d excitations energy and symmetry in CuGeO₃ by Cu-L₃ RIXS
- clear evidence of NN and NNN Zhang-Rice singlet excitons enhanced by O-K RIXS
- the temperature dependence of the ZRS excitons is linked to the local magnetic correlation at the ground state
- high-energy charge-transfer excitations (~4 eV) are directly connected to the magnetic phenomena at much lower energy scale (J_1 ~10 meV)

